免费十大污的app视频,国产亚洲一卡2卡3卡4卡网,亚洲AV永久无码精品主页,日韩一区二区三区精品不卡视频


免費(fèi)熱400-804-9794

產(chǎn)品
  • 產(chǎn)品
  • 文章
  • 商鋪
  • 論壇
  • 視頻
搜索

APRESS CENTER

學(xué)術(shù)交流

首页 >> 學(xué)術(shù)交流 >>默認(rèn)分類 >> 干貨 | p38 MAPK Related
详细内容

干貨 | p38 MAPK Related

时间:2023-05-21     作者:MCE【转载】   来自:MCE   阅读

MAPK 與 p38 MAPK

作為對外界物理和化學(xué)性質(zhì)變化的響應(yīng),哺乳動物細(xì)胞激活有絲分裂原激活蛋白激酶 (MAPK) 的四個特征性亞家族:ERK1/2、JNK、p38 和 ERK5。其中 p38 MAPKs 是一類保守的絲氨酸-蘇氨酸蛋白激酶,可被多種細(xì)胞外炎癥因子 (如TNF-α, IL-1),細(xì)菌脂多糖 LPS,趨化因子以及紫外線等多種應(yīng)激刺激激活。激活后的 p38 MAPK 通過調(diào)控下游多種酶及轉(zhuǎn)錄因子表達(dá)活性,從而對細(xì)胞功能進(jìn)行調(diào)節(jié)。大量研究表明,p38 MAPK 活性對正常免疫和炎癥反應(yīng)至關(guān)重要。同時,在腫瘤發(fā)生以及缺血再灌注損傷中也起著重要作用。

MAPK經(jīng)典激活途徑

與 p38 MAPK 相關(guān)靶點(diǎn)

MAPK 經(jīng)典激活途徑是通過 MAPK 激酶激酶 (MAP3K)-MAPK 激酶 (MAP2K) 途徑實(shí)現(xiàn)的。首先 MAP3K 被激活, 隨后,激活的 MAP3K 能磷酸化并激活MAP2K,接下來,MAP2K 磷酸化 MAPK,使MAPK激活。當(dāng)然,也存在與 MAP3K -MAP2K 無關(guān)的,非典型的自磷酸化激活途徑。在p38 MAPK激活途徑 (即其上游信號通路) 中,屬于MAP3K 類如 MEKK1-4,Tpl2,MLKs,ASK1/2,DLK,TAK1,TAO1/2;屬于MAP2K 類如 MKK3 和 MKK6 (有時是 MKK4,可激活 p38α)。

圖1. p38 MAPK 激活后下游靶點(diǎn)分布

p38 MAPK 包含四種亞型,分別為 p38α (MAPK 14),p38β (MAPK 11),p38γ (MAPK 12),p38δ (MAPK 13)。它們具有不同的組織表達(dá)模式,p38α 在大多數(shù)細(xì)胞類型中以顯著水平普遍表達(dá),而其他 p38 亞型似乎以更具組織特異性的方式表達(dá),如 p38β 在腦中表達(dá)較為豐富,p38γ 是在骨骼肌中,而 p38δ 則是在內(nèi)分泌腺中。p38 MAPK 激活后,由其介導(dǎo)的下游磷酸化調(diào)節(jié)主要為兩大類蛋白,一類為轉(zhuǎn)錄因子,如 p53,ATF2,Elk1,MEF2 和 C/EBPβ,另一類為蛋白激酶,包括 MK2 (也稱為 MAPKAP2),MSK1,MNK1 和 MNK2。

圖2. p38 MAPK 信號通路圖

如何選擇 p38 MAPK抑制劑 ?

由于 p38 MAPK 通路與眾多疾病如典型的炎癥,腫瘤相關(guān)疾病等。因此,阻斷 p38 MAPK 可能為治療許多疾病提供有效的治療方法。在實(shí)際研究中,想通過抑制 p38 MAPK 通路進(jìn)一步確定參與該疾病的蛋白或轉(zhuǎn)錄因子以及其表達(dá),合適的抑制劑非常重要。然而,由于 p38 MAPK 通路涉及的靶標(biāo)眾多,因此不同的抑制劑的抑制機(jī)理不同。例如,有些抑制劑是通過抑制 p38 MAPK 的活性,有些抑制劑則是通過抑制 p38磷酸化。敲黑板,劃重點(diǎn),如不清楚這些抑制劑的機(jī)制,不包括其他因素的情況,最后很可能導(dǎo)致所購買的抑制劑達(dá)不到預(yù)期的檢測效果 。

p38 MAPK 的經(jīng)典抑制劑

SB 203580 (RWJ 64809)

SB 203580 是最常見也是研究最多的選擇性 p38α,p38β MAPK 抑制劑 (IC50: p38α=50 nM; p38β2=500 nM)。研究表明,SB 203580 可通過結(jié)合 ATP 結(jié)合袋來抑制 p38 MAPK催化活性。SB 203580 不會影響來自 p38 MAPK 上游的激活 (即不影響 p38 MAPK 的磷酸化)。而通過檢測 MK2 和其底物熱休克蛋白 27 (HSP27) 磷酸化的抑制,也證明 SB 203580 抑制 p38 MAPK 的活性。
SB 202190
SB 202190 同 SB 203580一樣,也屬于吡啶基咪唑化合物類,是可滲透細(xì)胞的p38α,p38βMAPK 抑制劑 (IC50: p38α=50 nM;p38β2=100 nM)。SB 202190 通過結(jié)合 ATP 結(jié)合袋 (Kd=38 nM) 來抑制 p38 MAPK 活性。在 LPS 處理的巨噬細(xì)胞中,SB 202190 通過抑制 p38 MAPK 通路下游特異性底物 MK2 磷酸化,從而影響 HSP27 活化。但與 SB 203580 有所不同,在某些情況下,SB 202190 也可抑制 p38 MAPK 的磷酸化。

BIRB796 (Doramapimod)

Doramapimod 是一種具有口服活性的高效泛 p38 MAPK 抑制劑 (IC50:   p38α=38 nM; p38β=65 nM; p38γ=200 nM; p38δ=520 nM)。其抑制機(jī)制主要是與 ATP 位點(diǎn)相鄰的位置結(jié)合,間接影響 ATP 位點(diǎn)的構(gòu)象。BIRB796 與 p38 MAPK 或 JNK1/2 的結(jié)合會損害上游激酶 MKK6 或 MKK4 的磷酸化。BIRB796 阻斷應(yīng)激誘導(dǎo)的支架蛋白SAP97 的磷酸化,而 SAP97 是 p38γ 的生理學(xué)底物。此外,BIRB796 還抑制 B-Raf,IC50 分別為 83 nM。

 

p38 MAPK 經(jīng)典抑制劑

SB 203580

選擇性 p38α/p38β 抑制劑;結(jié)合 p38 的 ATP結(jié)合袋;不影響 p38 MAPK 的磷酸化;

SB 202190

細(xì)胞滲透性,強(qiáng)效的,p38α 和 p38β2 抑制劑; 結(jié)合 p38 的 ATP 口袋;在 LPS 處理的巨噬細(xì)胞中抑制  MK2 (MAPKAPK2) 的磷酸化,隨后抑制 HSP27 活化;

BIRB796 (Doramapimod)

口服活性,高效的,p38α/p38β/p38γ/p38δ 抑制劑; 可損害上游激酶 MKK6 磷酸化;抑制 B-Raf;

p38 MAPK 亞型選擇性抑制劑

Neflamapimod (VX-745)

具有選擇性的,可穿透血腦屏障的,良好的藥代動力學(xué)特征的 p38α抑制劑;抑制炎癥介質(zhì)的釋放,如TNF-α,IL-1β;

Talmapimod (SCIO-469)

選擇性的,具有口服活性的,ATP競爭性的 p38α 抑制劑;抑制 p38 磷酸化; 抑制 LPS 誘導(dǎo)的人全血中 TNF-α 的釋放;

其他 MAPK 通路抑制劑

FR 180204

細(xì)胞可滲透性的,ATP 競爭性的,選擇性的 ERK1/2 抑制劑;

SP600125

細(xì)胞可滲透性的,選擇性的,可逆的 JNK1/2/3 抑制劑;抑制 JNK 的磷酸化;

AS601245

細(xì)胞可滲透性的 JNK1/2/3 抑制劑;顯示神經(jīng)保護(hù)特性;

ML264

抗腫瘤劑,可有效且選擇性地抑制 KLF5 表達(dá);

PF-06260933

高選擇性的,可口服的 MAP4K4 抑制劑;

CMPD1

非 ATP 競爭性 p38 MAPK 介導(dǎo)的 MK2 磷酸化抑制劑;并抑制微管蛋白聚合并誘導(dǎo)膠質(zhì)母細(xì)胞瘤細(xì)胞凋亡;

MK2-IN-3 hydrate

具有口服活性的,選擇性的,ATP競爭性的 MK2 抑制劑;對 MK-3,MK-5,ERK2,MNK1,CDK2,JNK2,IKK2,MSK1,MSK2 也有選擇性;

Binimetinib (MEK162)

肥口服活性的,選擇性的 MEK1/2 抑制劑;

U0126

有效的,非 ATP 競爭性的 MEK1/2 抑制劑;在體內(nèi)阻斷 Mek1/2 靶基因 Erk1/2的磷酸化;

GW806742X

MLKL 抑制劑;結(jié)合 MLKL 假激酶結(jié)構(gòu)域;也具有抗 VEGFR2 的活性;

CGP 57380

細(xì)胞可滲透性的,選擇性 MNK1 抑制劑;在細(xì)胞試驗(yàn)中阻斷 eIF4E 的磷酸化;抑制 LPS 誘導(dǎo)的巨噬細(xì)胞中 TNFα 的表達(dá);

SL 0101-1

選擇性的,細(xì)胞可滲透性,可逆性的,ATP競爭性的 RSK 抑制劑;

 

Abbreviation

MAP3K: MAPK kinase kinase; MAP2K: MAPK kinase; MEKK: MAPK/ERK kinase kinase; Tpl2: Tumourprogression loci 2; MLK: Mixed LineageKinase; ASK1: Apoptosis signal-regulating kinase 1; DLK: Dual-leucine-zipper-bearing kinase;TAK1: TGFβ-activated kinase 1; TAO1/2: Thousand-and-one amino acid 1/2  ATF: Activating transcription factor; Elk1: ETS Like-1 protein Elk-1; MEF2: Myocyte enhancer factor 2; C/EBPβ: CCAAT/enhancer binding protein (C/EBP) β; MK2 (MAPKAP2): MAP kinase-activated protein kinase 2; MSK: Mitogen- and stress-activated kinase; MNK1: Mitogen-activated protein kinase-interacting kinase 1; HSP27: Heatshock protein 27; SAP97: Synapse-associated protein 97 
參考文獻(xiàn)

1. Johnson GL, et al. Mitogen-activated proteinkinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002 Dec6;298(5600):1911-2.

2. Wagner EF, et al. Signal integration by JNKand p38 MAPK pathways in cancer development.

3.Hari SB, et al.Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalyticfunctions of mitogen-activated protein kinases.Chem Biol. 2014 May22;21(5):628-35. 

4. Lee JC, et al. Inhibitionof p38 MAP kinase as a therapeutic strategy. Immunopharmacology. 2000 May;47(2-3):185-201.

5. Davies SP, et al. Specificity and mechanism ofaction of some commonly used protein kinase inhibitors. Biochem J. 2000Oct 1;351(Pt 1):95-105.

6.Frantz B, et al. The activation state of p38 mitogen-activated protein kinasedetermines the efficiency of ATP competition for pyridinylimidazole inhibitor binding.Biochemistry. 1998Sep 29;37(39):13846-53.

7. Fukunaga R, et al. MNK1, a new MAP kinase-activated proteinkinase, isolated by a novel expression screening method for identifying proteinkinase substrates.

8. Fabian MA, et al. A small molecule-kinaseinteraction map for clinical kinase inhibitors. Nat Biotechnol. 2005Mar;23(3):329-36.

9.Kuma Y, et al.BIRB796 inhibits all p38 MAPK isoforms in vitro andin vivo. J Biol Chem. 2005 May 20;280(20):19472-9.

10.Wagner G, et al. Small molecularanti-cytokine agents. Med Res Rev. 2006Jan;26(1):1-62.

11. Natarajan SR, et al. P38 MAP kinase inhibitors: evolution ofimidazole-based and pyrido-pyrimidin-2-one lead classes.

11.Raingeaud J, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinaseactivation by dual phosphorylation on tyrosine and threonine.

13. Kuliopulos A, et al. Effect of selective inhibition of the p38 MAPkinase pathway on platelet aggregation. ThrombHaemost. 2004Dec;92(6):1387-93. (VX-702)

14.Hope HR, et al. Anti-inflammatory properties of a novel N-phenylpyridinone inhibitor of p38 mitogen-activated protein kinase:preclinical-to-clinical translation. J Pharmacol Exp Ther. 2009 Dec;331(3):882-95.

15.Xing L, et al. Structuralbioinformatics-based prediction of exceptional selectivity of p38 MAP kinaseinhibitor PH-797804. Biochemistry. 2009 Jul 14;48(27):6402-11.

16. Chaudhary O, et al. Inhibition of p38 MAPK in combination withART reduces SIV-induced immune activation and provides additional protection fromimmune system deterioration. PLoS Pathog. 2018 Aug 30;14(8):e1007268.

17. Cicenas J, et al. JNK, p38, ERK,and SGK1 Inhibitors in Cancer. Cancers(Basel). 2017Dec 21;10(1). pii: E1.

18. Goldstein DM, et al. Selective p38alpha inhibitors clinicallyevaluated for the treatment of chronic inflammatory J Med Chem. 2010 Mar 25;53(6):2345-53.disorders.

19. Tony Navas,et al. Thep38α MAPK inhibitor SCIO-469 enhances the apoptotic and anti-proliferativeeffects of proteasome inhibitors MG132 and PS341 (Velcade) in multiple myelomacells. Cellular, Molecular, and Tumor Biology 65: Cell Surface Death Pathways I 


最新评论
请先登录才能进行回复登录
客服中心
联系方式
4008049794
18013491198
13371870032
- 銷售經(jīng)理
掃一掃,關(guān)注微信
seo seo