APRESS CENTER
學(xué)術(shù)交流
|
干貨 | p38 MAPK Related作為對外界物理和化學(xué)性質(zhì)變化的響應(yīng),哺乳動物細(xì)胞激活有絲分裂原激活蛋白激酶 (MAPK) 的四個特征性亞家族:ERK1/2、JNK、p38 和 ERK5。其中 p38 MAPKs 是一類保守的絲氨酸-蘇氨酸蛋白激酶,可被多種細(xì)胞外炎癥因子 (如TNF-α, IL-1),細(xì)菌脂多糖 LPS,趨化因子以及紫外線等多種應(yīng)激刺激激活。激活后的 p38 MAPK 通過調(diào)控下游多種酶及轉(zhuǎn)錄因子表達(dá)活性,從而對細(xì)胞功能進(jìn)行調(diào)節(jié)。大量研究表明,p38 MAPK 活性對正常免疫和炎癥反應(yīng)至關(guān)重要。同時,在腫瘤發(fā)生以及缺血再灌注損傷中也起著重要作用。 MAPK經(jīng)典激活途徑 與 p38 MAPK 相關(guān)靶點(diǎn) MAPK 經(jīng)典激活途徑是通過 MAPK 激酶激酶 (MAP3K)-MAPK 激酶 (MAP2K) 途徑實(shí)現(xiàn)的。首先 MAP3K 被激活, 隨后,激活的 MAP3K 能磷酸化并激活MAP2K,接下來,MAP2K 磷酸化 MAPK,使MAPK激活。當(dāng)然,也存在與 MAP3K -MAP2K 無關(guān)的,非典型的自磷酸化激活途徑。在p38 MAPK激活途徑 (即其上游信號通路) 中,屬于MAP3K 類如 MEKK1-4,Tpl2,MLKs,ASK1/2,DLK,TAK1,TAO1/2;屬于MAP2K 類如 MKK3 和 MKK6 (有時是 MKK4,可激活 p38α)。
p38 MAPK 包含四種亞型,分別為 p38α (MAPK 14),p38β (MAPK 11),p38γ (MAPK 12),p38δ (MAPK 13)。它們具有不同的組織表達(dá)模式,p38α 在大多數(shù)細(xì)胞類型中以顯著水平普遍表達(dá),而其他 p38 亞型似乎以更具組織特異性的方式表達(dá),如 p38β 在腦中表達(dá)較為豐富,p38γ 是在骨骼肌中,而 p38δ 則是在內(nèi)分泌腺中。p38 MAPK 激活后,由其介導(dǎo)的下游磷酸化調(diào)節(jié)主要為兩大類蛋白,一類為轉(zhuǎn)錄因子,如 p53,ATF2,Elk1,MEF2 和 C/EBPβ,另一類為蛋白激酶,包括 MK2 (也稱為 MAPKAP2),MSK1,MNK1 和 MNK2。
如何選擇 p38 MAPK抑制劑 ? p38 MAPK 的經(jīng)典抑制劑 SB 203580 (RWJ 64809)
Abbreviation 1. Johnson GL, et al. Mitogen-activated proteinkinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002 Dec6;298(5600):1911-2. 2. Wagner EF, et al. Signal integration by JNKand p38 MAPK pathways in cancer development. 3.Hari SB, et al.Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalyticfunctions of mitogen-activated protein kinases.Chem Biol. 2014 May22;21(5):628-35. 4. Lee JC, et al. Inhibitionof p38 MAP kinase as a therapeutic strategy. Immunopharmacology. 2000 May;47(2-3):185-201. 5. Davies SP, et al. Specificity and mechanism ofaction of some commonly used protein kinase inhibitors. Biochem J. 2000Oct 1;351(Pt 1):95-105. 6.Frantz B, et al. The activation state of p38 mitogen-activated protein kinasedetermines the efficiency of ATP competition for pyridinylimidazole inhibitor binding.Biochemistry. 1998Sep 29;37(39):13846-53. 7. Fukunaga R, et al. MNK1, a new MAP kinase-activated proteinkinase, isolated by a novel expression screening method for identifying proteinkinase substrates. 8. Fabian MA, et al. A small molecule-kinaseinteraction map for clinical kinase inhibitors. Nat Biotechnol. 2005Mar;23(3):329-36. 9.Kuma Y, et al.BIRB796 inhibits all p38 MAPK isoforms in vitro andin vivo. J Biol Chem. 2005 May 20;280(20):19472-9. 10.Wagner G, et al. Small molecularanti-cytokine agents. Med Res Rev. 2006Jan;26(1):1-62. 11. Natarajan SR, et al. P38 MAP kinase inhibitors: evolution ofimidazole-based and pyrido-pyrimidin-2-one lead classes. 11.Raingeaud J, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinaseactivation by dual phosphorylation on tyrosine and threonine. 13. Kuliopulos A, et al. Effect of selective inhibition of the p38 MAPkinase pathway on platelet aggregation. ThrombHaemost. 2004Dec;92(6):1387-93. (VX-702) 14.Hope HR, et al. Anti-inflammatory properties of a novel N-phenylpyridinone inhibitor of p38 mitogen-activated protein kinase:preclinical-to-clinical translation. J Pharmacol Exp Ther. 2009 Dec;331(3):882-95. 15.Xing L, et al. Structuralbioinformatics-based prediction of exceptional selectivity of p38 MAP kinaseinhibitor PH-797804. Biochemistry. 2009 Jul 14;48(27):6402-11. 16. Chaudhary O, et al. Inhibition of p38 MAPK in combination withART reduces SIV-induced immune activation and provides additional protection fromimmune system deterioration. PLoS Pathog. 2018 Aug 30;14(8):e1007268. 17. Cicenas J, et al. JNK, p38, ERK,and SGK1 Inhibitors in Cancer. Cancers(Basel). 2017Dec 21;10(1). pii: E1. 18. Goldstein DM, et al. Selective p38alpha inhibitors clinicallyevaluated for the treatment of chronic inflammatory J Med Chem. 2010 Mar 25;53(6):2345-53.disorders. 19. Tony Navas,et al. Thep38α MAPK inhibitor SCIO-469 enhances the apoptotic and anti-proliferativeeffects of proteasome inhibitors MG132 and PS341 (Velcade) in multiple myelomacells. Cellular, Molecular, and Tumor Biology 65: Cell Surface Death Pathways I |